Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(44): 23925-23938, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883679

RESUMO

Protein glycosylation is a common post-translational modification on extracellular proteins. The conformational dynamics of several glycoproteins have been characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS). However, it is, in most cases, not possible to extract information about glycan conformation and dynamics due to the general difficulty of separating the deuterium content of the glycan from that of the peptide (in particular, for O-linked glycans). Here, we investigate whether the fragmentation of protonated glycopeptides by collision-induced dissociation (CID) can be used to determine the solution-specific deuterium content of the glycan. Central to this concept is that glycopeptides can undergo a facile loss of glycans upon CID, thereby allowing for the determination of their masses. However, an essential prerequisite is that hydrogen and deuterium (H/D) scrambling can be kept in check. Therefore, we have measured the degree of scrambling upon glycosidic bond cleavage in glycopeptides that differ in the conformational flexibility of their backbone and glycosylation pattern. Our results show that complete scrambling precedes the glycosidic bond cleavage in normal glycopeptides derived from a glycoprotein; i.e., all labile hydrogens have undergone positional randomization prior to loss of the glycan. In contrast, the glycosidic bond cleavage occurs without any scrambling in the glycopeptide antibiotic vancomycin, reflecting that the glycan cannot interact with the peptide moiety due to a conformationally restricted backbone as revealed by molecular dynamics simulations. Scrambling is also inhibited, albeit to a lesser degree, in the conformationally restricted glycopeptides ristocetin and its pseudoaglycone, demonstrating that scrambling depends on an intricate interplay between the flexibility and proximity of the glycan and the peptide backbone.


Assuntos
Glicopeptídeos , Hidrogênio , Glicopeptídeos/química , Deutério , Peptídeos/química , Glicoproteínas/química , Polissacarídeos/química
2.
J Phys Chem B ; 127(37): 7907-7924, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681731

RESUMO

Myotonic dystrophy type 1 is the most frequent form of muscular dystrophy in adults caused by an abnormal expansion of the CTG trinucleotide. Both the expanded DNA and the expanded CUG RNA transcript can fold into hairpins. Co-transcriptional formation of stable RNA·DNA hybrids can also enhance the instability of repeat tracts. We performed molecular dynamics simulations of homoduplexes associated with the disease, d(CTG)n and r(CUG)n, and their corresponding r(CAG)n:d(CTG)n and r(CUG)n:d(CAG)n hybrids that can form under bidirectional transcription and of non-pathological d(GTC)n and d(GUC)n homoduplexes. We characterized their conformations, stability, and dynamics and found that the U·U and T·T mismatches are dynamic, favoring anti-anti conformations inside the helical core, followed by anti-syn and syn-syn conformations. For DNA, the secondary minima in the non-expanding d(GTC)n helices are deeper, wider, and longer-lived than those in d(CTG)n, which constitutes another biophysical factor further differentiating the expanding and non-expanding sequences. The hybrid helices are closer to A-RNA, with the A-T and A-U pairs forming two stable Watson-Crick hydrogen bonds. The neutralizing ion distribution around the non-canonical pairs is also described.


Assuntos
DNA , Repetições de Trinucleotídeos , Adulto , Humanos , Biofísica , Ligação de Hidrogênio , RNA
3.
J Mol Biol ; 435(10): 168086, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37024008

RESUMO

DNA trinucleotide repeat (TRs) expansion beyond a threshold often results in human neurodegenerative diseases. The mechanisms causing expansions remain unknown, although the tendency of TR ssDNA to self-associate into hairpins that slip along their length is widely presumed related. Here we apply single molecule FRET (smFRET) experiments and molecular dynamics simulations to determine conformational stabilities and slipping dynamics for CAG, CTG, GAC and GTC hairpins. Tetraloops are favored in CAG (89%), CTG (89%) and GTC (69%) while GAC favors triloops. We also determined that TTG interrupts near the loop in the CTG hairpin stabilize the hairpin against slipping. The different loop stabilities have implications for intermediate structures that may form when TR-containing duplex DNA opens. Opposing hairpins in the (CAG) âˆ™ (CTG) duplex would have matched stability whereas opposing hairpins in a (GAC) âˆ™ (GTC) duplex would have unmatched stability, introducing frustration in the (GAC) âˆ™ (GTC) opposing hairpins that could encourage their resolution to duplex DNA more rapidly than in (CAG) âˆ™ (CTG) structures. Given that the CAG and CTG TR can undergo large, disease-related expansion whereas the GAC and GTC sequences do not, these stability differences can inform and constrain models of expansion mechanisms of TR regions.


Assuntos
DNA , Doenças Neurodegenerativas , Repetições de Trinucleotídeos , Humanos , DNA/genética , DNA/química , DNA Complementar , Conformação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos/genética , Doenças Neurodegenerativas/genética
4.
Comput Biol Med ; 159: 106902, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086661

RESUMO

The investigation of the strong infrared (IR)-active amide I modes of peptides and proteins has received considerable attention because a wealth of detailed information on hydrogen bonding, dipole-dipole interactions, and the conformations of the peptide backbone can be derived from the amide I bands. The interpretation of experimental spectra typically requires substantial theoretical support, such as direct ab-initio molecular dynamics simulation or mixed quantum-classical description. However, considering the difficulties associated with these theoretical methods and their applications are limited in small peptides, it is highly desirable to develop a simple yet efficient approach for simulating the amide I modes of any large proteins in solution. In this work, we proposed a comprehensive computational method that extends the well-established molecular dynamics (MD) simulation method to include an unpolarized IR laser for exciting the CO bonds of proteins. We showed the amide I frequency corresponding to the frequency of the laser pulse which resonated with the CO bond vibration. At this frequency, the protein energy and the CO bond length fluctuation were maximized. Overall, the amide I bands of various single proteins and amyloids agreed well with experimental data. The method has been implemented into the AMBER simulation package, making it widely available to the scientific community. Additionally, the application of the method to simulate the transient amide I bands of amyloid fibrils during the IR laser-induced disassembly process was discussed in details.


Assuntos
Amidas , Simulação de Dinâmica Molecular , Amidas/química , Espectrofotometria Infravermelho/métodos , Proteínas/química , Peptídeos/química , Ligação de Hidrogênio
5.
ACS Omega ; 7(43): 38728-38743, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340174

RESUMO

Friedreich's ataxia is associated with noncanonical nucleic acid structures that emerge when GAA:TTC repeats in the first intron of the FXN gene expand beyond a critical number of repeats. Specifically, the noncanonical repeats are associated with both triplexes and R-loops. Here, we present an in silico investigation of all possible triplexes that form by attaching a third RNA strand to an RNA:RNA or DNA:DNA duplex, complementing previous DNA-based triplex studies. For both new triplexes results are similar. For a pyridimine UUC+ third strand, the parallel orientation is stable while its antiparallel counterpart is unstable. For a neutral GAA third strand, the parallel conformation is stable. A protonated GA+A third strand is stable in both parallel and antiparallel orientations. We have also investigated Na+ and Mg2+ ion distributions around the triplexes. The presence of Mg2+ ions helps stabilize neutral, antiparallel GAA triplexes. These results (along with previous DNA-based studies) allow for the emergence of a complete picture of the stability and structural characteristics of triplexes based on the GAA and TTC/UUC sequences, thereby contributing to the field of trinucleotide repeats and the associated unusual structures that trigger expansion.

6.
Nucleic Acids Res ; 50(9): 4860-4876, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35536254

RESUMO

The expansion of d(CGG) trinucleotide repeats (TRs) lies behind several important neurodegenerative diseases. Atypical DNA secondary structures have been shown to trigger TR expansion: their characterization is important for a molecular understanding of TR disease. CD spectroscopy experiments in the last decade have unequivocally demonstrated that CGG runs adopt a left-handed Z-DNA conformation, whose features remain uncertain because it entails accommodating GG mismatches. In order to find this missing motif, we have carried out molecular dynamics (MD) simulations to explore all the possible Z-DNA helices that potentially form after the transition from B- to Z-DNA. Such helices combine either CpG or GpC Watson-Crick steps in Z-DNA form with GG-mismatch conformations set as either intrahelical or extrahelical; and participating in BZ or ZZ junctions or in alternately extruded conformations. Characterization of the stability and structural features (especially overall left-handedness, higher-temperature and steered MD simulations) identified two novel Z-DNA helices: the most stable one displays alternately extruded Gs, and is followed by a helix with symmetrically extruded ZZ junctions. The G-extrusion favors a seamless stacking of the Watson-Crick base pairs; extruded Gs favor syn conformations and display hydrogen-bonding and stacking interactions. Such conformations could have the potential to hijack the MMR complex, thus triggering further expansion.


Assuntos
DNA Forma Z , Pareamento de Bases , DNA/química , DNA/genética , Guanina/química , Conformação de Ácido Nucleico , Repetições de Trinucleotídeos/genética
7.
Bio Protoc ; 11(18): e4155, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34692905

RESUMO

Atypical DNA and RNA secondary structures play a crucial role in simple sequence repeat (SSR) diseases, which are associated with a class of neurological and neuromuscular disorders known as "anticipation diseases," where the age of disease onset decreases and the severity of the disease is increased as the intergenerational expansion of the SSR increases. While the mechanisms underlying these diseases are complex and remain elusive, there is a consensus that stable, non-B-DNA atypical secondary structures play an important - if not causative - role. These structures include single-stranded DNA loops and hairpins, G-quartets, Z-DNA, triplex nucleic acid structures, and others. While all of these structures are of interest, structures based on nucleic acid triplexes have recently garnered increased attention as they have been implicated in gene regulation, gene repair, and gene engineering. Our work here focuses on the construction of DNA triplexes and RNA/DNA hybrids formed from GAA/TTC trinucleotide repeats, which underlie Friedreich's ataxia. While there is some software, such as the Discovery Studio Visualizer, that can aid in the initial construction of DNA triple helices, the only option for the triple helix is constrained to be that of an antiparallel pyrimidine for the third strand. In this protocol, we illustrate how to build up more generalized DNA triplexes and DNA/RNA mixed hybrids. We make use of both the Discovery Studio Visualizer and the AMBER simulation package to construct the initial triplexes. Using the steps outlined here, one can - in principle - build up any triple nucleic acid helix with a desired sequence for large-scale molecular dynamics simulation studies.

8.
Comput Struct Biotechnol J ; 19: 2819-2832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093995

RESUMO

Pathogenic DNA secondary structures have been identified as a common and causative factor for expansion in trinucleotide, hexanucleotide, and other simple sequence repeats. These expansions underlie about fifty neurological and neuromuscular disorders known as "anticipation diseases". Cell toxicity and death have been linked to the pathogenic conformations and functional changes of the RNA transcripts, of DNA itself and, when trinucleotides are present in exons, of the translated proteins. We review some of our results for the conformations and dynamics of pathogenic structures for both RNA and DNA, which include mismatched homoduplexes formed by trinucleotide repeats CAG and GAC; CCG and CGG; CTG(CUG) and GTC(GUC); the dynamics of DNA CAG hairpins; mismatched homoduplexes formed by hexanucleotide repeats (GGGGCC) and (GGCCCC); and G-quadruplexes formed by (GGGGCC) and (GGGCCT). We also discuss the dynamics of strand slippage in DNA hairpins formed by CAG repeats as observed with single-molecule Fluorescence Resonance Energy Transfer. This review focuses on the rich behavior exhibited by the mismatches associated with these simple sequence repeat noncanonical structures.

9.
RSC Adv ; 11(5): 2664-2676, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424222

RESUMO

Alzheimer's disease is linked to the aggregation of the amyloid-ß protein (Aß) of 40 or 42 amino acids. Lipid membranes are known to modulate the rate and mechanisms of the Aß aggregation. Point mutations in Aß can alter these rates and mechanisms. In particular, experiments show that F19 mutations influence the aggregation rate, but maintain the fibril structures. Here, we used molecular dynamics simulations to examine the effect of the F19W mutation in the 3Aß11-40 trimer immersed in DPPC lipid bilayers submerged in aqueous solution. Substituting Phe by its closest (non-polar) aromatic amino acid Trp has a dramatic reduction in binding affinity to the phospholipid membrane (measured with respect to the solvated protein) compared to the wild type: the binding free energy of the protein-DPPC lipid bilayer increases by 40-50 kcal mol-1 over the wild-type. This is accompanied by conformational changes and loss of salt bridges, as well as a more complex free energy surface, all indicative of a more flexible and less stable mutated trimer. These results suggest that the impact of mutations can be assessed, at least partially, by evaluating the interaction of the mutated peptides with the lipid membranes.

10.
Nucleic Acids Res ; 48(17): 9899-9917, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32821947

RESUMO

Expansion of the GAA/TTC repeats in the first intron of the FXN gene causes Friedreich's ataxia. Non-canonical structures are linked to this expansion. DNA triplexes and R-loops are believed to arrest transcription, which results in frataxin deficiency and eventual neurodegeneration. We present a systematic in silico characterization of the possible DNA triplexes that could be assembled with GAA and TTC strands; the two hybrid duplexes [r(GAA):d(TTC) and d(GAA):r(UUC)] in an R-loop; and three hybrid triplexes that could form during bidirectional transcription when the non-template DNA strand bonds with the hybrid duplex (collapsed R-loops, where the two DNA strands remain antiparallel). For both Y·R:Y and R·R:Y DNA triplexes, the parallel third strand orientation is more stable; both parallel and antiparallel protonated d(GA+A)·d(GAA):d(TTC) triplexes are stable. Apparent contradictions in the literature about the R·R:Y triplex stability is probably due to lack of molecular resolution, since shifting the third strand by a single nucleotide alters the stability ranking. In the collapsed R-loops, antiparallel d(TTC+)·d(GAA):r(UUC) is unstable, while parallel d(GAA)·r(GAA):d(TTC) and d(GA+A)·r(GAA):d(TTC) are stable. In addition to providing new structural perspectives for specific therapeutic aims, our results contribute to a systematic structural basis for the emerging field of quantitative R-loop biology.


Assuntos
DNA/química , Ataxia de Friedreich/genética , Ácidos Nucleicos Heteroduplexes/química , Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop
11.
Nucleic Acids Res ; 48(5): 2232-2245, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31974547

RESUMO

DNA trinucleotide repeats (TRs) can exhibit dynamic expansions by integer numbers of trinucleotides that lead to neurodegenerative disorders. Strand slipped hairpins during DNA replication, repair and/or recombination may contribute to TR expansion. Here, we combine single-molecule FRET experiments and molecular dynamics studies to elucidate slipping dynamics and conformations of (CAG)n TR hairpins. We directly resolve slipping by predominantly two CAG units. The slipping kinetics depends on the even/odd repeat parity. The populated states suggest greater stability for 5'-AGCA-3' tetraloops, compared with alternative 5'-CAG-3' triloops. To accommodate the tetraloop, even(odd)-numbered repeats have an even(odd) number of hanging bases in the hairpin stem. In particular, a paired-end tetraloop (no hanging TR) is stable in (CAG)n = even, but such situation cannot occur in (CAG)n = odd, where the hairpin is "frustrated'' and slips back and forth between states with one TR hanging at the 5' or 3' end. Trinucleotide interrupts in the repeating CAG pattern associated with altered disease phenotypes select for specific conformers with favorable loop sequences. Molecular dynamics provide atomic-level insight into the loop configurations. Reducing strand slipping in TR hairpins by sequence interruptions at the loop suggests disease-associated variations impact expansion mechanisms at the level of slipped hairpins.


Assuntos
DNA/química , Sequências Repetidas Invertidas , Repetições de Trinucleotídeos , Pareamento de Bases , Transferência Ressonante de Energia de Fluorescência , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Imagem Individual de Molécula , Termodinâmica
12.
Chem Commun (Camb) ; 55(91): 13697-13700, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31657364

RESUMO

A tungsten metallacyclopentadiene complex is generated upon treating a trianionic pincer tungsten alkylidyne with dipropargyl fluorene. The metallacyclopentadiene initiates the polymerization of alkynes to give cyclic polyacetylenes via ring expansion polymerization (REP).

13.
J Phys Chem B ; 122(16): 4491-4512, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29617130

RESUMO

Expansions of both GGC and CCG sequences lead to a number of expandable, trinucleotide repeat (TR) neurodegenerative diseases. Understanding of these diseases involves, among other things, the structural characterization of the atypical DNA and RNA secondary structures. We have performed molecular dynamics simulations of (GCC) n and (GGC) n homoduplexes in order to characterize their conformations, stability, and dynamics. Each TR has two reading frames, which results in eight nonequivalent RNA/DNA homoduplexes, characterized by CpG or GpC steps between the Watson-Crick base pairs. Free energy maps for the eight homoduplexes indicate that the C-mismatches prefer anti-anti conformations, while G-mismatches prefer anti-syn conformations. Comparison between three modifications of the DNA AMBER force field shows good agreement for the mismatch free energy maps. The mismatches in DNA-GCC (but not CCG) are extrahelical, forming an extended e-motif. The mismatched duplexes exhibit characteristic sequence-dependent step twist, with strong variations in the G-rich sequences and the e-motif. The distribution of Na+ is highly localized around the mismatches, especially G-mismatches. In the e-motif, there is strong Na+ binding by two G(N7) atoms belonging to the pseudo GpC step created when cytosines are extruded and by extrahelical cytosines. Finally, we used a novel technique based on fast melting by means of an infrared laser pulse to classify the relative stability of the different DNA-CCG and -GGC homoduplexes.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA/química , Repetições de Trinucleotídeos
14.
ACS Chem Neurosci ; 9(5): 1104-1117, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29281254

RESUMO

A (GGGGCC) hexanucleotide repeat (HR) expansion in the C9ORF72 gene has been considered the major cause behind both frontotemporal dementia and amyotrophic lateral sclerosis, while a (GGGCCT) is associated with spinocerebellar ataxia 36. Recent experiments involving NMR, CD, optical melting and 1D 1H NMR spectroscopy, suggest that the r(GGGGCC) HR can adopt a hairpin structure with G-G mismatches in equilibrium with a G-quadruplex structure. G-Quadruplexes have also been identified for d(GGGGCC). As these experiments lack molecular resolution, we have used molecular dynamics microsecond simulations to obtain a structural characterization of the G-quadruplexes associated with both HRs. All DNA G-quadruplexes, parallel or antiparallel, with or without loops are stable, while only parallel and one antiparallel (stabilized by diagonal loops) RNA G-quadruplexes are stable. It is known that antiparallel G-quadruplexes require alternating guanines to be in a syn conformation that is hindered by the C3'-endo pucker preferred by RNA. Initial RNA antiparallel quadruplexes built with C2'-endo sugars evolve such that the transition (C2'-endo)-to-(C3'-endo) triggers unwinding and buckling of the flat G-tetrads, resulting in the unfolding of the RNA antiparallel quadruplex. Finally, a parallel G-quadruplex stabilizes an adjacent C-tetrad in both DNA and RNA (thus effectively becoming a mixed quadruplex of 5 layers). The C-tetrad is stabilized by the stacking interactions with the preceding G-tetrad, by cyclical hydrogen bonds C(N4)-(O2), and by an ion between the G-tetrad and the C-tetrad. In addition, antiparallel DNA G-quadruplexes also stabilize flat C-layers at the ends of the quadruplexes.


Assuntos
Expansão das Repetições de DNA/genética , DNA/genética , Proteínas do Tecido Nervoso/genética , RNA/genética , Esclerose Amiotrófica Lateral/genética , Proteína C9orf72/genética , Dicroísmo Circular/métodos , Quadruplex G/efeitos da radiação , Humanos , Modelos Moleculares , Proteínas Nucleares , Conformação de Ácido Nucleico/efeitos dos fármacos
15.
Nucleic Acids Res ; 46(2): 942-955, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29190385

RESUMO

Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an 'e-motif'. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5'-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i - 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.


Assuntos
Citosina/química , DNA/química , Repetições de Microssatélites/genética , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Repetições de Trinucleotídeos/genética , Pareamento de Bases , Sequência de Bases , DNA/genética , Guanina/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
16.
Biophys J ; 113(1): 19-36, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700917

RESUMO

CAG trinucleotide repeats are known to cause 10 late-onset progressive neurodegenerative disorders as the repeats expand beyond a threshold, whereas GAC repeats are associated with skeletal dysplasias and expand from the normal five to a maximum of seven repeats. The TR secondary structure is believed to play a role in CAG expansions. We have carried out free energy and molecular dynamics studies to determine the preferred conformations of the A-A noncanonical pairs in (CAG)n and (GAC)n trinucleotide repeats (n = 1, 4) and the consequent changes in the overall structure of the RNA and DNA duplexes. We find that the global free energy minimum corresponds to A-A pairs stacked inside the core of the helix with anti-anti conformations in RNA and (high-anti)-(high-anti) conformations in DNA. The next minimum corresponds to anti-syn conformations, whereas syn-syn conformations are higher in energy. Transition rates of the A-A conformations are higher for RNA than DNA. Mechanisms for these various transitions are identified. Additional structural and dynamical aspects of the helical conformations are explored, with a focus on contrasting CAG and GAC duplexes. The neutralizing ion distribution around the noncanonical pairs is described.


Assuntos
DNA , Conformação de Ácido Nucleico , RNA , Repetições de Trinucleotídeos , Cátions/química , DNA/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Análise de Componente Principal , RNA/química , Sódio/química
17.
ACS Chem Neurosci ; 8(3): 578-591, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27933757

RESUMO

A (GGGGCC) hexanucleotide repeat (HR) expansion in the C9ORF72 gene, and its associated antisense (CCCCGG) expansion, are considered the major cause behind frontotemporal dementia and amyotrophic lateral sclerosis. We have performed molecular dynamics simulations to characterize the conformation and dynamics of the 12 duplexes that result from the three different reading frames in sense and antisense HRs for both DNA and RNA. These duplexes display atypical structures relevant not only for a molecular level understanding of these diseases but also for enlarging the repertoire of nucleic-acid structural motifs. G-rich helices share common features. The inner G-G mismatches stay inside the helix in Gsyn-Ganti conformations and form two hydrogen bonds (HBs) between the Watson-Crick edge of Ganti and the Hoogsteen edge of Gsyn. In addition, Gsyn in RNA forms a base-phosphate HB. Inner G-G mismatches cause local unwinding of the helix. G-rich double helices are more stable than C-rich helices due to better stacking and HBs of G-G mismatches. C-rich helix conformations vary wildly. C mismatches flip out of the helix in DNA but not in RNA. Least (most) stable C-rich RNA and DNA helices have single (double) mismatches separated by two (four) Watson-Crick basepairs. The most stable DNA structure displays an "e-motif" where mismatched bases flip toward the minor groove and point in the 5' direction. There are two RNA conformations, where the orientation and HB pattern of the mismatches is coupled to bending of the helix.


Assuntos
DNA , Proteínas/genética , RNA , Sequências Repetitivas de Ácido Nucleico/genética , Esclerose Amiotrófica Lateral/genética , Pareamento Incorreto de Bases , Proteína C9orf72 , Cromossomos Humanos Par 9/genética , DNA/química , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Análise de Componente Principal , RNA/química
18.
Nat Chem ; 8(8): 791-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27442285

RESUMO

Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

19.
J Chem Phys ; 144(14): 145101, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083751

RESUMO

We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5'-CGCGCGCGCGCG-3')2 sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.


Assuntos
DNA de Forma B/química , DNA Forma Z/química , Lasers , Termodinâmica , Simulação de Dinâmica Molecular
20.
Phys Chem Chem Phys ; 18(17): 11951-8, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27071540

RESUMO

Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.


Assuntos
Materiais Biocompatíveis/química , Poliovirus/química , Vírion/química , Humanos , Raios Infravermelhos , Lasers , Simulação de Dinâmica Molecular , Poliomielite/virologia , Poliovirus/efeitos da radiação , Vírion/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...